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Abstract— The paper presents a study of the performance
variations of the Bayesian model of peer-assessment implemented in
OpenAnswer, in terms of the grades prediction accuracy.
OpenAnswer (OA) models a peer assessment session as a Bayesian
network. For each student, a sub-network contains variables
describing relevant aspects of both the individual cognitive state and
the state of the current assessment session. Sub-networks are
interconnected to each other to obtain the final one. Evidence
propagated through the global network is represented by all the
grades given by students to their peers, together with a subset of the
teacher’s corrections. Among the possible affecting factors, the paper
reports about the investigation of the dependence of grades prediction
performance on the quality of the class, i.e., the average level of
proficiency of its students, and on the number of peers assessed by
each student. The results show that both factors affect the accuracy of
the inferred marks produced by the Bayesian network, when
compared with the available ground-truth produced by teachers.

Keywords—peer assessment; Bayesian inference; student model;
dependencies among cognitive abilities

I. INTRODUCTION

It is a common intuitive understanding that one realizes to
have achieved good mastery of a topic/skill when able to
explain it and to correct own peers. As a matter of fact,
Bloom’s taxonomy of educational objectives in the cognitive
domain [3] formalizes such understanding. Comprehension,
application, analysis, evaluation, and, finally synthesis of
learning items, are deemed to require wider and firmer
mastery than pure knowledge, intended as just remembering
details about a topic and being able to report them. Even the
revised version of the taxonomy in [1], that was conceived to
further qualify knowledge abilities in relation to specific
subjects, puts remember, understand and apply at increasing
levels, while analyze, evaluate and create lay at the same top
level. They are universally considered as higher metacognitive
skills, that go well beyond the basic proficiency in a topic.
Metacognitive activities require knowing about knowing [15],
since they refer to higher order thinking processes. The ability
to exercise an active control over the cognitive processes
underlying learning, entails the ability to plan strategies and
conceive working schedules, and to monitor comprehension
and progress towards completion. In addition, the awareness
of how to apply new concepts and rules, and the ability to
evaluate activity outcomes even in relation to peers, is
undoubtedly superior to passive acquisition of notions. For
these reasons, peer-assessment is widely considered an
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important exercise not only to test, challenge and improve
students’ understanding of a topic, but also to achieve,
exercise, and enforce higher metacognitive abilities. Students
can get further advantage from teacher’s assessment of the
peer assessment. In fact, they can learn from smarter peers
how to improve one’s results [18] and grasp the rationale of
how the achieved results underlie the grading process, by
matching the grades they assigned with teacher’s/peers’
evaluation. Of course, as in teacher’s assessment, the
significance of the results also depends on the articulation of
the exercising pattern. The more possibilities are left to the
students to express their thought and knowledge in a not
fortuitous ways (and possibly to make mistakes), the higher
the reliability of the assessment. Open answers to specific
questions allow proposing a variety of challenges to students,
including exercises, short essays, free text answers to
questions, etc. Therefore, they are much more informative
than multiple-choice questionnaires, and better allow to
evaluate both knowledge and evaluation abilities of students
[17]. The other side of the coin is that they entail much more
teacher’s work, especially with a large group of students.

The OpenAnswer framework (OA) [20][21][22] aims at
killing two birds with one stone. It allows (semi-)automated
grading of open answers through peer assessment, with less
grading burden as possible to the teacher. The starting point is
a model of both the knowledge level and the judgement ability
of single students and of the overall class.

OA assessment is organized into sessions. A session set-up
entails to assign to each student a number (e.g., 3) of peers’
answers to grade, possibly following some assignment
criterion. The system provides the possibility to either carry
out “pure” peer-assessment, or to involve the teacher in
grading a subset of answers. This subset is dynamically
identified step by step according to some relevant select-next-
or-stop strategy. Both select and stop are each driven by
specific rules.

OA framework is based on the theory of evidence
propagation in Bayesian networks. Each student is represented
through his/her cognitive/metacognitive level, which is
modeled by discrete variables making up a fragment of a
global Bayesian Network (BN). These discrete variables
provide an estimate of the student’s knowledge level on the
topic (K), and of the student’s ability to evaluate (J). In the
same way, the answers of the student have an estimated
correctness value (C). All variables, and in particular the latter
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one, are updated by evidence propagation. The global network
and its topology are built by interconnecting the described
single sub-networks. The interconnections are determined by
the answers graded by each student, while the assessments
provided by peers, and possibly by the teacher, are fed and
propagated within the BN as evidence values. The final values
of C variables represent the estimated correctness of the
answers. Providing each student also with his/her final K and J
values also spurs metacognitive awareness.

The model is quite rich, so that many investigations are
possible regarding its parameters and rules. The final goal is to
identify the best setting to achieve a sufficient accuracy with
possibly a low engagement for the teacher in the pure grading
process. Earlier works [8][20][21][22] analyzed several factors
affecting the network. The research questions addressed here
are:

RQ1) is there a "best" value for the number of peers each
student should assess? In other words, is it possible to find out
an “optimal” compromise between the number of peers
assessed by each student, and the final grades accuracy? On
one side one expects to obtain better predictions from more
assessments, on the other side students hardly tolerate to
assess t0o many peers.

RQ2) how much the prediction ability of the OA model
changes when the class is composed by students with medium-
high knowledge level, with respect to the case where their
knowledge is medium-low? In this case it is reasonable to
expect the model to show better results in case of a class of
smarter students than in the case of weaker ones.

As the two expectations above could seem somewhat
obvious, we could say that they can be considered a strong
(meta) requirement for any good model of peer assessment.

In order to investigate the above ideas (and check our
meta-requirement), we run experiments that simulate the
teacher correcting a fixed 30% of the students (in general, this
percentage is rather variable and driven by a specific stopping
criterion), and results compare the grades predicted for the
remaining students with the true teacher's grades (available as
ground truth).

In order to compare networks with a varying number N of
peers assessed, we have obtained many similar peer-
assessment networks by using a dataset where 60 students
assessed 20 peers each, and by selecting a subset of given size
N of peers to be corrected by each student.

The same dataset can be used to create classes with the
preferred distribution of students with medium-high/medium-
low knowledge (as estimated from the ground truth), by
selecting the subgraph induced by the desired groups of
students.

The simulations with a varying number of N peers per
student (RQ1) show that the best results are obtained for the
maximum number of peers (4) we can assign with this dataset.
Regarding the class composition, the simulation results show
that OA predicts better from assessments made by medium-
high students, with respect to the case of medium-low ones
(RQ2). This result further confirms the strict relation between
cognitive and metacognitive abilities. The paper continues
with a summary of related work, presented in Section II.
Section III presents the necessary details of OA framework, to
comprehend the assessment setting and the possible research
lines stemming from the devised architecture. Section IV

presents the experimental setup and discusses the results.
Section V draws conclusions and sketches future research.

II. RELATED WORK

The automatic extraction of relevant information from
large amounts of (free-text) data typically relies on techniques
of data mining and natural language processing. One of the
contexts where these techniques are used is the design of
marketing applications, when there is need to infer customer
opinions and synthesize products reputation [26]. Concept
mapping and coding schemes are an alternative used in [13].
As discussed in the introduction, the automatic analysis of
open answers is among the most powerful learning assessment
tools (knowledge tracing) [2], and relies on similar processing
[11]. (Semi-)automatic assessment of open-answers in [4]
exploits ontologies and semantic web technologies.

Assessment of peers’ work is a higher cognitive level
activity [3]. Its educational use pursues different goals [24]: to
allow the learner to appreciate the personal cognitive state and
progress, and to evaluate and possibly amend gaps in learning
achievements. According to [14], there is a relationship
between the quality of the peers feedback, on a learner's job,
and the quality of the final project submitted by the learner.
The work in [6] presents a comprehensive study of peer
assessment in a prototype educational setting. Of course, the
real educational value of peer assessment has been the object
of many other investigations. Without going too much
backwards in time, an interesting study published in 1994 [19]
presents the evaluation, in terms of correlations between sets
of marks, of a collaborative peer, self and tutor assessment
scheme. Among the issues addressed, there is the reliability of
student-derived marks, and the learning benefits achieved by
students participating in peer and self-assessment procedures.
In particular, the study investigates the perceived tendencies of
high achieving students to underestimate their performance,
and of low achieving students to overestimate their ones. The
reported results indicate that students have a realistic
perception of their own abilities and can make rational
judgements on the achievements of their peers. In addition, the
positive implications of introducing peer and self-assessment
schemes into undergraduate courses are discussed. The
difference in evaluations carried out by high achieving
students and low achieving students is especially related with
RQ2 addressed here, and is also underlined by results in [23].

OA system is designed such that the evaluation of open
answers through peer-assessment is carried out by modeling
students by individual Bayesian Networks, which are
interconnected through assessment. The work in [7] proposes
a different machine learning approach to student modeling. In
this case, Bayesian Network techniques are used to support
learner's modeling in an Intelligent Tutoring System (ITS).
Before the OA assessment session starts, the students are
presented with a set of teacher-defined assessing criteria, to
refer to while marking. This is an important step, since works
in literature identify the specificity of "scoring criteria" as an
important factor to avoid a range of peer marks possibly
limited to the high end of the scale [16]. The results of the
meta-analysis in [12] show that peer assessments were found
to resemble more closely teacher assessments when using
global judgements based on well understood criteria rather
than when marking involves assessing several individual
dimensions. An interesting aspect of research in peer-
assessment regards the number of peer-evaluations that a same
job should undergo during the process. In OA this is



configurable (default is 3) and is related with the RQ1 for this
paper. Literature reports that more feedback on the same job
makes the peer perform more thorough revisions, ending up
with a better result [5]. In particular, the experiments in [23]
address this aspect in relation to teenagers, and also
investigate possible differences between the evaluation of
individual versus group work. Reported results show that the
acceptable accuracy is achieved with 3 or 4 raters for the
assessments of individual performance, but 14-17 raters are
needed for assessments of group work. Furthermore, the
discrepancy between the ratings of students and experts was
higher in group-work assessments then in individual-work
assessments. This opens interesting research lines related to
the evaluation of group-work.

III. OPENANSWER BAYESIAN APPROACH

The OA system models peer-assessment as a Bayesian
Network (BN). This global network is composed by
interconnecting individual sub-networks representing single
students. Each such subnetwork is made of three discrete
nodes/variables, making up the student model, and
representing respectively:

. K: student’s knowledge about the topic
. C: the correctness of student’s answer
. J: student’s ability to judge/assess a peer’s answer

. plus one variable G for each grade given to a peer (G
variables represent the interconnections among individual
subnetworks).

Each Bayesian variable above is in general defined over a
6-valued discrete domain, ranging from A (best) to F (fail). In
the case of the dataset used for these experiments [25] the
discrete domain ranges over 5 values (ABCDF) because the
initial grades were expressed on a 5-valued scale.

A Grade value (for the corresponding G wvariable) is
injected into the network when a student marks a peer’s
answer, and propagates its effects depending on both the
current value of J of the grading student, and on the current
estimation of C of the answer corrected.

Variables C and J are assumed to be related to K, in
particular they are represented by a conditional distribution of
values conditioned by K (C | K and J | K). The motivation for
the C dependency is because writing an essay cannot be
carried out by a random guess (as it would be possible in the
case of multiple-choice quizzes). As for J, the inspiring
principle stems from Bloom’s taxonomy of cognitive levels
[3], where judging a peer’s answer is considered as a more
difficult task than knowing the topic and answering it. The
distribution of values for G is conditioned by J and C (G | J,
C). For each conditioned distribution it is necessary to model a
Conditional Probability Table (CPT), describing the
corresponding hypothesized probabilistic dependence.

An interesting issue is the initial probability distribution
for K. A first alternative is to assume it flat (constant
probability=1/6), i.e., no preliminary knowledge about the
class. A second one is TgradeDist, i.e., the same probability
distribution derived from the teacher grades of that
assessment. Of course, in a real situation such information is
only available ex-post, but it is useful in experiments to show
what would happen if the system had some initial global in-

formation on the K distribution of the class, though no
information on single students.

When teacher correction activity is included in the process,
the systems supports the correction by suggesting the next
answer to grade, according to some pre-selected rule, and by
notifying the teacher when no further correction is needed,
again according to a pre-defined stop condition. As for the
stop condition, possible investigated alternatives can be found
in [8]. However, in order to focus the comparison on other
elements, in this work we stop the correction at 30% of
answers. As for the choice of the next answer to grade, this is
done trying to maximize the information gain achieved by its
actual correction. Possible criteria are discussed in [8] and [9].
Among those, only the one achieving the best average results
in past experiments is used here for comparison with the best
topological criterion in [9]. Namely, the first rule is
maxEntropy: the next answer to grade is the one presenting
the highest entropy, in practice the one the system knows less
about. The topological criterion is minAvgDistLInferred: it
selects the next student in order to minimize the average
distance among the inferred students and their nearest
corrected peer (i.e. to reduce the average distance the
information should traverse).

IV. EXPERIMENTAL RESULTS

A. Experiments setup

The benchmark used for experiments is a dataset of 60
students, each of which graded 20 peers [25]. This allows both
building networks with different interconnection (answers
graded by each peer) and to significantly divide the class
according to student homogeneous knowledge level.

1) Number of corrections per student
To study the most suitable number of answers to grade per
student (number of peers) the experiments were set up as
follows:

- the dataset is preliminarily divided into groups, from 1 to
5 (i.e. from 60 to 12 students per group).; at the end of the
computations the performance measures are averaged over
such groups; this was mainly required because of the
computational limits tied to the Bayesian network
computation, which made very difficult to simulate bigger
groups of students with more than 4 peers each;

- the number of peer assessments assigned to each student
for a test session ranges from 1 to 4.

To ensure that in the generated essessments each answer
received an almost uniform number of assessments from
peers, a circular rule was followed: the peers to assess
assigned to each student were picked from the available ones
with ID greater than the assessing student (modulo the number
of students in the group), so to obtain a ring-shaped network
structure. This kind of network has a slightly higher diameter
than a completely random one, and this is the reason why,
regarding the selection of the next answer to correct by the
teacher, we tested both the best information-based selection
strategy (maxEntropy), and the above mentioned topology-
based strategy (minAvgDistLInferred), which tries to keep
minimal the average distance between the still uncorrected
students and their nearest corrected peer in the network.
Elsewhere [9] we have shown that a topology-oriented
strategy performs better than our earlier best strategy
(maxEntropy) when the network has high diameter.



To compare results among different strategies we use a
fixed termination condition where we stop as soon as 30% of
answers have been corrected by the teacher.

Respect to the initial probability distribution for K, we
tested both flat and TgradeDist.

2) Quality of the class
The ranges that were separately considered for class
knowledge level are the following: ALL (students achieving
any ground-truth mark in ABCDF), MIDHI (marks in ABC),
and MIDLO (marks in CDF)

For each range, the following set up was executed:

- as above, the dataset was divided into N groups (1 with
60 students, 2 with 30 students,..., 5 with 12 students) over
which averaging of performance results was carried out;

- for each test session, only students with a mark in the
given range were included in the simulation;

- for each student, the first 3 marks that that student had
provided during the session were used in the simulation.

In this case, also, in order to obtain a symmetric
distribution of marks, peers were rotated in the dataset in order
to get a ring-shaped network structure. Because the ring-
shaped network has a slightly higher diameter than one built
by choosing peers completely at random, even in this group of
simulations we have applied also the above mentioned
topology-based selection strategy (minAvgDistLInferred).

To evaluate the quality of OA predictions we show the
percentage  of inferred grades predicted exactly
(OK/INFERRED) and predicted within 1 grade from the
correct one (IN1/INFERRED). As the available dataset
contains the corrections made by 4 different teachers, we
simulate the correction separately for each teacher. The
average between all four teachers is summarized in the Overall
column. It is worth underlining that the students made only

one correction for each essay, while there are 4 different
corrections from the teachers. Of course, only one introduction
to grading criteria was presented to the class, which could
have been more or less consistent with each of the teachers’
grading styles. It is reasonable therefore to expect a different
level of agreement between the students and the different
teachers, and therefore different OA performances depending
on the teachers (this issue is also mentioned in the related
work section).

To get an idea of which teacher was more/less in
agreement with the students’ assessments, below we show the
average absolute difference between student grades and
teacher’s (normalized) grades, (see TasLe 1). We notice that
teacher with ID=107 shows the best agreement with the
student’s grades (1.3 grades on a 10 point scale), while the
others show a higher disagreement (1.7 grades on a 10 point
scale).

TABLE 1 AVERAGE PEER GRADE DIFFERENCE RESPECT TO TEACHERS’ GRADES
TEACHER ID 5 107 | 887 | 1033
Average of DeltaPeerGrade | 0.16 | 0.13 | 0.17 | 0.17

B. Experimental results

1) Number of peers corrected per student
Respect to the number of peers, in TasLe 2 we show the OA
performances respect to an increasing number of peers
corrected by each students, ranging from 1 to 4. In this case it
is possible to initialize P(K) either as a flat distribution or as
teacher grades distribution (7gradeDis?).

The algorithm sketched above is used to select the set of
peers to be corrected by each student, which produces a ring-
shaped network. We test both the information-based
maxEntropy strategy and the topologic-based strategy
minAvgDistLInferred.

The table is colored to highlight the best results (in green)
and the worst ones (in red).

TABLE 2 QUALITY OF PREDICTIONS DEPENDING ON
AVERAGE NUMBER OF PEERS

P(K) init. flat TgradeDist flat TgradeDist

STRATEGY maxEntropy minAvgDistLInferred
Data Num. Peers

1 38% 40% 30% 39%
Average of 2 41% 46% 41% 43%
OK/INFERRED 3 45% 48% 42% 43%
4 45% 50% 44% 47%
1 88% 91% 81% 89%
Average of 2 90% 90% 88% 91%
IN1/INFERRED 3 89% 90% 87% 88%
4 92% 92% 91% 91%

From the table we notice that the best results are obtained
for higher numbers of peers (4). This confirms our initial
intuition that when we ask the students to correct more peers,
OA gets more information and can predict better.

Moreover, as expected, when something is known about
the overall abilities of the class (P(K)=TgradeDist) OA
performs better, respect to the case where nothing is known
(P(K)=flat).

Finally, probably because the averaged sub-groups are small
(5 groups of 12 students) and thus the network diameters are
low, the topology-oriented selection strategy
(minDistLInferred) shows worse results than the information-
based one (maxEntropy).

This provides a positive answer to RQ1: the number of
peers assessed by each student influences the accuracy of the
final result, the higher the better.

2) Quality of the class
In TasLe 3 we show the percentage of grades inferred by
OA exactly or within one grade from the ground truth, both
when the class is of mid-hi quality (RANGE=midhi, grades
ABC) or when it is of mid-lo quality (RANGE=midlo, grades
CDF). We further compare the results with the case where no
selection has been made on the class (RANGE=all).

In this case we use only the P(K) initialization of type “flat”
(i.e. no info on the class) because this information already
underlies the session division of the class by selecting a subset



of students with a given set of grades (ABC or CDF). In this
case TgradeDist, which would constrain the K values only on
the corresponding 3 values, would give to the OA model too
much information.

The table is colored to highlight the best results (in green) and
the worst ones (in red).

TABLE 3 QUALITY OF PREDICTIONS DEPENDING ON
QUALITY OF CLASS AND TEACHER

TEACHER ID

Data RANGE | STRATEGY 5 107 887 1033 | Overall
midhi maxEntropy 54% 49% 52% 35% 47%
minAvgDistLInferred 55% 51% 52% 45% 51%
Average of midio maxEntropy 26% 57% 8% 14% 26%
OK/INFERRED minAvgDistLInferred 18% 34%  11% 28% 23%
all maxEntropy 45% 57% @ 43% 26% 43%
minAvgDistLInferred 50% 50% 36% 31% 42%
midhi maxEntropy 95% 97% 94% 92% 95%
minAvgDistLInferred 87% 100% 97% 98% 95%
Average of midio maxEntropy 82% 85% | 53% 61% 70%
INL/INFERRED minAvgDistLInferred 76% 90%  64% 80% 7%
all maxEntropy 90% 98% 90% 83% 90%
minAvgDistLInferred 81% 100% 81% 83% 86%

From TasLE 3, column ‘Overall’, we see that with a midhi
class OA predicts grades way better than in the case of a midlo
class. This testifies that the adopted model satisfies the (meta)
requirement that any peer assessment should predict better
when students knows better the topic. At the same time we
expect a generic class (line ‘all’) to perform in an intermediate
way respect to ‘midhi’ and ‘midlo’, which the table shows.

From the table we notice that the performances of OA when
the class is all made of midlo students decreases, since the
propagation of less reliable information (poor grading) makes
very hard for the Bayesian network to predict exactly
(OK/INFERRED) or within 1 grade from the ground truth
(IN1/INFERRED). This is clearly evident from the Overall
column, which shows the average results over the 4 teachers.
With this we answer RQ2, showing that a better class injects
better information into the model, obtaining more precise
predictions. This is somewhat expected, given the definition of
the P(G|J,C) CPT, which on the C, D, F grades produces very
shallow Gaussians (lower ability to deduce something from
the grades given to peers).

Respect to the teachers, the best results are obtained on teacher
107, which is the one most agreeing with the student’s grades.
For the other teachers the OA performances are in general
reasonably good, except for teacher 1033 where OA predicts
poorly on exact grades and reasonably good within 1 grade.
Elsewhere [10] we have shown that the Conditional
Probability Tables (CPTs) describing the probabilistic
dependences in the Bayesian network could be specifically
tailored to the teacher-class pair. This can be done when a
sufficient set of peer assessment session results are available.
In this case we have used a unique “one size fits all” set of
CPTs for all teachers, thus it’s not unexpected to see worse
performances respect to one of the teachers.

V. CONCLUSIONS

The presented experimental results show that OA performs
better when each student assesses more peers, and on classes
with better students.. More formally:

e they answer to RQ1 by showing that a higher number
of peers (4 in this case) produces better predictions;

e they answer to RQ2 by confirming that a OA predicts
better in the case of a better class.

While these outcomes may seem obvious, actually they
confirm that the devised OA model behaves correctly with
respect to the meta-requirements.

Because of computational constraints and of the dataset
available, we were able to test only generated peer
assessments with a maximum number of 4 peers. In a near
future, it will be interesting to find a way to lift, at least
partially, these computational limits and simulate cases with 5
or more peers per student.
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